Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Poly[[diaqua(μ_{3}-2,2-dimethylmalonato)cadmium(II)] tetrahydrate]

Ming-Lin Guo* and Chen-Hu Guo

School of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University,
Tianjin 300160, People's Republic of China
Correspondence e-mail: guomlin@yahoo.com
Received 6 March 2009
Accepted 5 June 2009
Online 24 June 2009
In the title complex, $\left\{\left[\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the dimethylmalonate-cadmium metal-organic framework coexists with an extended structure of water molecules, which resembles a sodalite-type framework. In the asymmetric unit, there are five independent solvent water molecules, two of which are in special positions. The Cd atoms are eightcoordinated in a distorted square-antiprismatic geometry by six O atoms of three different dimethylmalonate groups and by two water molecules, and form a two-dimensional honeycomb layer parallel to the $b c$ plane. Two such layers sandwich the hydrogen-bonded water layer, which has a sodalite-type structure with truncated sodalite units composed of coordinated and solvent water molecules. This work is the first example of a dimethylmalonate cadmium complex containing truncated sodalite-type water clusters.

Comment

Malonate and substituted malonate derivatives are often ligands of choice for the design of metal-organic frameworks or molecular assemblies because of their manifold coordination modes and the variety of the resulting architectures (Rodriguez-Martin et al., 2002). Some complexes with $\mathrm{Cd}^{\text {II }}$ have been reported and they contain mainly dianionic malonate, which can be found coordinating to the metal both through two distal carboxylate O atoms to form a sixmembered ring, and through the nonchelating O atoms to build up bridged compounds, as in poly[tetraaquabis ($\mu_{3}-$ malonato)dicadmium(II)] (Fu et al., 2006; Zhao et al., 2007), or by two bidentate ligands to form polymeric poly[aqua ($\mu_{3}-$ malonato)cadmium(II)] (Post \& Trotter, 1974) and rhombohedral poly[[aqua(μ_{3}-malonato)cadmium(II)] monohydrate] complexes (Naumov et al., 2001). However, only a few complexes with dimethylmalonate as ligand are known. Recently, we reported a five-coordinated dimethylmalonate zinc complex (Guo \& Zhao, 2006) and a novel cocrystallization complex of neutral molecules of dimethylmalonic acid with a dianionic dimethylmalonate-barium metal-organic
framework (Guo \& Guo, 2008). Using dimethylmalonic acid as ligand, in an unsuccessful attempt to obtain a structure similar to or isotypic with that of poly[tetraaqua-di- μ_{4}-mal-onato-barium(II)zinc(II)] (Guo \& Guo, 2006), we obtained the title eight-coordinate dimethylmalonate-cadmium complex, (I), which exhibits the unexpected co-existence of an extended sodalite-type water structure and a metal-organic framework.

(I)

The asymmetric unit of (I) comprises one $\mathrm{Cd}^{\mathrm{II}}$ cation, one complete dimethylmalonate dianion, two coordinated water molecules and five noncoordinated water molecules, of which molecules O 10 and O 11 are in special positions. Fig. 1 shows the structure of (I) in a symmetry-expanded view displaying the full coordination of the $\mathrm{Cd}^{\mathrm{II}}$ centre. Selected geometric parameters are given in Table 1.

In the dianionic dimethylmalonate ligand, the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angles for the two carboxylate groups are almost the same and the four $\mathrm{C}-\mathrm{O}$ bond distances of the two carboxylate groups are in the range 1.251 (4)-1.266 (4) \AA. This indicates that both carboxylate groups are delocalized. As observed in other dimethylmalonate structures, the two carboxylate groups are non-coplanar (Guo \& Guo, 2008). The O1/C1/O2 carboxylate group is rotated by $40.2(4)^{\circ}$ out of the central atom plane ($\mathrm{C} 1 /$ $\mathrm{C} 2 / \mathrm{C} 3$), while the other carboxylate group, $\mathrm{O} 3 / \mathrm{C} 3 / \mathrm{O} 4$, forms an angle with the same plane of $87.9(4)^{\circ}$; the dihedral angle between the two carboxylate groups is $82.6(5)^{\circ}$.

The Cd atoms have distorted square-antiprism geometry, coordinated by two chelating O atoms ($\mathrm{O} 2^{\mathrm{ii}}$ and $\mathrm{O} 3^{\mathrm{ii}}$; see Fig. 1 for symmetry code) of one dimethylmalonate dianion, four O atoms (O 1 and O 2 , and $\mathrm{O} 3^{\mathrm{i}}$ and $\mathrm{O} 4^{\mathrm{i}}$) from the other two dimethylmalonates and two mutually trans O atoms from

Figure 1
A view of the structure of (I), showing the atom-numbering scheme and the coordination polyhedra for the $\mathrm{Cd}^{\mathrm{II}}$ centres. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) x, $-y+1, z+\frac{1}{2}$; (iii) $x,-y+1, z-\frac{1}{2}$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.]

Figure 2
A packing diagram for (I), showing the two-dimensional polymeric layer in the $b c$ plane, viewed approximately down the a axis. The H atoms of the methyl groups have been omitted for clarity.
water molecules (O5 and O6). The whole dimethylmalonate dianion chelates Cd 1 iii to form a six-membered ring (see Fig. 1 for symmetry code). The bond angle at atom C 2 [C3-C2$\left.\mathrm{C} 1=103.8(2)^{\circ}\right]$ is smaller than the normal value, suggesting that there is greater strain in the six-membered ring of (I) than in the poly[tetraaquabis(μ_{3}-malonato)dicadmium(II)] complex (Fu et al., 2006). Atoms O1 and O2 of the O1/C1/O2 carboxylate group coordinate to atom Cd 1 , and similarly, atoms O 3 and O 4 coordinate to atom $\mathrm{Cd} 1^{\text {iv }}$ (see Fig. 1 for symmetry code). In this way, one complete dimethylmalonate dianion links three Cd atoms. This results in a $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1^{\mathrm{iii}}$ distance of $4.7753(10) \AA$ and a $\mathrm{Cd} 1^{\mathrm{iii}} \ldots \mathrm{Cd} 1^{\text {iv }}$ distance of 4.1711 (9) \AA. In the $b c$ plane, two adjacent Cd atoms are bridged by two O 3 atoms or one O 2 atom, respectively. This results in two Cd distorted square antiprisms sharing an edge or a corner. In this way, each Cd is connected to three other $\mathrm{Cd}^{\mathrm{II}}$ centres, and each group of six $\mathrm{Cd}^{\mathrm{II}}$ centres is associated into a 12 -membered ring in the $b c$ plane. These are further joined into a two-dimensional honeycomb layer structure (Fig. 2).

The detailed structure of an extended water layer in the $b c$ plane is shown in Fig. 3. The $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ subunit comprises water molecules O7, O9, O10 and O11. Along the b-axis direction, adjacent tetramers are connected to each other by hydrogen bonds. In this way, the tetramers produce a one-dimensional water tape $\mathrm{T} 4(0)$ (Infantes \& Motherwell, 2002), which contains O7..OO11 $1^{\text {vi }} \ldots \mathrm{O} 7^{\text {vi }} \ldots \mathrm{O} 11$ and O9..OO10..OO $9^{\text {viii. }} \ldots$ $\mathrm{O} 10^{\text {viii }}$ tetramers (see Fig. 3 for symmetry codes). In the c direction, these tetramers form two different T4(1) water tapes and connect further with each other into an O7...O9...O10..OO $9^{\text {ix } \ldots O} 7^{\text {ix }} \ldots$ O11 $1^{\text {vi }}$ hexamer. Adjacent tetramers and hexamers share an edge or a corner, giving rise to an extended water layer L4(6)6(8). The hydrogen-bonding parameters of the water molecules are summarized in Table 2. As can be seen from Table 2 and Fig. 3, within the water layer, water molecules O10 and O11 display tetrahedral geometries

Figure 3
A packing diagram for (I), showing the layered water cluster. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (vi) $-x+1,-y+1,-z+1$; (viii) $-x+1,-y+2,-z+1$; (ix) $-x+1$, $y,-z+\frac{3}{2}$.]

Figure 4
The packing of (I), showing the two-dimensional polymeric layers in the $b c$ plane and the hydrogen-bonding interactions (dashed lines) that link them in the a-axis direction. Displacement ellipsoids are drawn at the 50% probability level.
with double hydrogen-bond donors and acceptors. The $\mathrm{O} \cdots \mathrm{O}$ distances are in the range $2.750(3)-2.897$ (4) \AA, with an average of 2.860 (4) \AA, which is comparable with the range observed in ice II (2.77-2.84 Å; Gregory et al., 1997). The $\mathrm{O} \cdots \mathrm{O} \cdots \mathrm{O}$ angles vary from 83.5 (1) to $123.8(1)^{\circ}$.

One of the most important features of the present structure is the fact that the two-dimensional metal-organic framework formed by $\mathrm{Cd}^{\mathrm{II}}$ cations and dimethylmalonate ligands integrates with the two-dimensional hydrogen-bonded water framework, which has a sodalite-type structure with truncated sodalite units. Each truncated sodalite unit comprises 16 solvent water molecules and three coordinated water molecules. To the best of our knowledge, such an extended sodalite-type water structure has not been reported previously. As can be seen in Fig. 4, the structure as a whole
consists of two distinct layers that stack alternately in the [100] direction. In addition to the two-dimensional dimethyl-malonate-cadmium metal-organic layer, there is the extended two-dimensional hydrogen-bonded water layer, which is based on water molecules O8, O5 and O6 and the above-mentioned L4(6)6(8) water cluster, and has a sodalite-type structure with truncated sodalite units. The connectivity between neighbouring layers is completed by intra- and interlayer hydrogenbond interactions.

Experimental

The title complex was prepared by successive addition of dimethylmalonic acid $(0.53 \mathrm{~g}, 4 \mathrm{mmol}), \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(0.63 \mathrm{~g}, 2 \mathrm{mmol})$ and $3 \mathrm{CdSO}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}(0.77 \mathrm{~g}, 1 \mathrm{mmol})$ to distilled water $(20 \mathrm{ml})$ at room temperature with continuous stirring. After filtration, slow evaporation over a period of two weeks at room temperature provided colourless needle-shaped crystals of (I).

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$V=2517.5(9) \AA^{3}$
$M_{r}=350.59$
Monoclinic, $C 2 / c$
$a=26.015$ (5) \AA
$Z=8$
$b=12.094$ (2) \AA
$c=8.4579$ (17) \AA
Mo $K \alpha$ radiation
$\mu=1.77 \mathrm{~mm}^{-1}$
$T=133 \mathrm{~K}$
$0.18 \times 0.10 \times 0.08 \mathrm{~mm}$
$\beta=108.91$ (3) ${ }^{\circ}$

Data collection

Rigaku Saturn CCD area-detector diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)
$T_{\text {min }}=0.804, T_{\text {max }}=0.876$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$	148 parameters
$w R\left(F^{2}\right)=0.070$	H-atom parameters constrained
$S=1.11$	$\Delta \rho_{\max }=0.63 \mathrm{e} \AA \AA^{-3}$
2206 reflections	$\Delta \rho_{\min }=-0.97 \mathrm{e} \AA^{-3}$

One H atom of each water molecule in a special position and the H atoms of other water molecules were found in difference Fourier maps. However, during refinement, they were restrained at $\mathrm{O}-\mathrm{H}=$ $0.85(1) \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The H atoms of the $\mathrm{C}-\mathrm{H}$ groups were treated as riding, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Tianjin Polytechnic University for financial support.

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1$	$2.303(2)$	$\mathrm{O} 2-\mathrm{Cd} 1 \mathrm{iii}$	$2.379(2)$
$\mathrm{Cd} 1-\mathrm{O} 2$	$2.678(2)$	$\mathrm{O} 4-\mathrm{Cd} 1^{\text {iv }}$	$2.305(2)$
$\mathrm{Cd} 1-\mathrm{O} 5$	$2.407(2)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.256(4)$
$\mathrm{Cd} 1-\mathrm{O} 6$	$2.315(2)$	$\mathrm{C} 1-\mathrm{O} 2$	$1.266(4)$
$\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.690(2)$	$\mathrm{C} 3-\mathrm{O} 3$	$1.251(4)$
$\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{ii}}$	$2.338(2)$	$\mathrm{C} 3-\mathrm{O} 4$	$1.258(4)$
O6-Cd1-O5	$150.79(7)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$103.8(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$122.6(3)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	$122.4(3)$

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x,-y+1, z+\frac{1}{2}$; (iii) $x,-y+1, z-\frac{1}{2}$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {iii }}$	0.84	1.97	2.788 (3)	162
O5-H5B \cdots O8	0.84	2.00	2.819 (3)	164
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 8^{\text {iv }}$	0.86	1.90	2.745 (3)	168
O6-H6B $\cdots \mathrm{O}^{\text {v }}$	0.85	1.85	2.701 (3)	172
O7-H7A . ${ }^{\text {O5 }}$	0.84	1.96	2.797 (3)	170
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 11^{\text {vi }}$	0.85	2.05	2.879 (3)	165
O8-H8A \cdots O9	0.85	1.95	2.750 (3)	156
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\text {vii }}$	0.85	2.09	2.849 (3)	148
$\mathrm{O} 8-\mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.85	2.35	2.910 (3)	124
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O}$	0.84	2.08	2.897 (4)	165
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 10^{\text {viii }}$	0.85	1.99	2.837 (3)	180
$\mathrm{O} 10-\mathrm{H} 104 \cdots \mathrm{O} 9$	0.85	2.14	2.833 (3)	139
O11-H11A \cdots O7	0.86	2.02	2.856 (3)	164

Symmetry codes: (ii) $x,-y+1, z+\frac{1}{2}$; (iii) $x,-y+1, z-\frac{1}{2}$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (vi) $-x+1,-y+1,-z+1$; (vii) $-x+\frac{1}{2},-y+\frac{3}{2},-z+1$; (viii)
$-x+1,-y+2,-z+1$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KU3007). Services for accessing these data are described at the back of the journal.

References

Fu, X.-C., Li, M.-T., Wang, X.-Y., Wang, C.-G. \& Deng, X.-T. (2006). Acta Cryst. E62, m959-m961.
Gregory, J. K., Clary, D. C., Liu, K., Brown, M. G. \& Saykally, R. J. (1997). Science, 275, 814-817.
Guo, M.-L. \& Guo, C.-H. (2006). Acta Cryst. C62, m7-m9.
Guo, M.-L. \& Guo, C.-H. (2008). Acta Cryst. C64, m398-m400.
Guo, M.-L. \& Zhao, Y.-N. (2006). Acta Cryst. C62, m563-m565.
Infantes, L. \& Motherwell, S. (2002). CrystEngComm, 4, 454-461.
Naumov, P., Ristova, M., Sǒptrajanov, B., Kim, M.-J., Lee, H.-J. \& Ng, S. W. (2001). Acta Cryst. E57, m14-m16.

Post, M. L. \& Trotter, J. (1974). J. Chem. Soc. Dalton Trans. pp. 1922-1925.
Rigaku/MSC (2005). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.
Rodriguez-Martin, Y., Hernandez-Molina, M., Delgado, F. S., Pasan, J., RuizPerez, C., Sanchiz, J., Lloret, F. \& Julve, M. (2002). CrystEngComm, 4, 522535.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhao, X.-J., Zhang, Z.-H., Wang, Y. \& Du, M. (2007). Inorg. Chim. Acta, 360, 1921-1928.

